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Abstract

We consider the problem of optimal asymptotically faithful compression for
ensembles of mixed quantum states. Although the optimal rate is unknown,
we prove upper and lower bounds and describe a series of illustrative examples
of compression of mixed states. We also discuss a classical analogue of the
problem.

PACS numbers: 03.6%a, 03.65.Ta

1. Introduction

The emergence of potentially useful theoretical protocols for using quantum states in
cryptography and quantum computation has increased the theoretical (and perhaps ultimately
practical) importance of questions about how quantum states can be compressed, transmitted
across noisy or low-dimensional channels, and recovered, and otherwise manipulated in a
fashion analogous to classical information. Most of the work done on these matters, beginning
with [1], has focused on the manipulation of pure states, with mixed states appearing only in
intermediate stages, as the result of noise. An exception is [2], which considered the copying
or broadcasting of mixed states. When mixed states have appeared as states to be transmitted,
it has usually been required that their potential entanglement with some reference system
be preserved, as in [3]. This focuses attention again piwastate, the entangled state of
system and reference system. As discussed further in [4] there is a close relation between
entanglement transmission and the transmission of pure states of the system itself.

In the present paper, we consider the compression or transmission of mixedstates,
any requirement that their entanglement or correlation with other systems be preserved. There
might seem to be good reason to confine oneself to pure-state transmission, since mixed
states, considered apart from any potential entanglement with other systems, might not seem

0305-4470/01/356767+19%$30.00 © 2001 IOP Publishing Ltd  Printed in the UK 6767


http://stacks.iop.org/ja/34/6767

6768 H Barnumet al

particularly useful. This may be why the classical analogue of the problem we consider in
this paper—the transmission of probability distributions—has not, to our knowledge, been
previously studied. Game theory is perhaps the first situation that springs to mind in which
one might wish to produce a mixed state intentionally, given that all pure states of which it
may be viewed as a mixture are available, since it is well known to game theorists that mixed
strategies may be better than any of their component pure strategies in important situations
[5, 6]. Thus a ‘practical’ application of mixed-state compression might be the compression of
mixed strategies, where the ‘decoding’ is done by the player playing the strategy or someone
who shares his goals. In cryptographic applications (closely related to game theory, of course)
and also in probabilistic classical algorithms, there may be a use for randomness and an
interest in compressing it for efficient storage or transmission. Indeed, quantum computation
can enable more-efficient-than-classical sampling from probability distributions [7, 8]; there
may be relations between these ideas and the work reported here.

The problem of optimal compression for ensembles of pure quantum states has been
solved [1, 9, 10], but for sources of mixed states the minimal resources are unknown. This
question has also been considered by Horodecki in [11, 12]. In this paper, we consider
several variants of the question, depending on the fidelity criteria and en¢dditaping
procedures used. Sections 2 and 3 present the problem, in variants depending on whether or
not the encodgcompressor knows the identity of each state and can use it to help encode,
and depending on whether, in a block-coding setting, a marginal (‘local’) or total (‘global’)
fidelity criterion is used; section 4 considers relations between these variants of the problem,
in general and for the special case of pure states. Section 5 discusses the fact that the entropy
of a source ensemble’s average density operator provides (as in the pure-state case) an upper
bound on the rate at which qubits must be used to represent the source. We also show that
under the global fidelity criterion, if decodings are required to be unitary, this is actually the
optimal rate. Section 6 formulates a classical version of the problem, which we have not seen
treated in classical information theory, and discusses examples. In section 7, we show with
several examples that in contrast to the pure state case, it is possiblgewdthl decodings
to compress to below the entropy of the average density operator. This section also introduces
a useful preparation-visible technique, that of compression by purifications, which we show
does better than our classical methods for some of the classical mixed-state compression
problems considered in section 6. Finally, in section 8 we show that the Holevo quantity
SO, pioi) — Y_; piS(oy) for an ensemble gives a lower bound on the qubit rate required to
represent a source. (A different proofis given in [11].) We do not know whether this lower
bound is attainable in general.

2. Formulation of the problem

In this paper,S(p) will always denote the von Neumann entropy of a density matrand
H(p1, ..., pn) Will denote the Shannon entropy of a probability distributjan. . ., p,. In
both cases logarithms are taken to base 2:

S(p) = —tr(plog, p)
H(p1,....pn) = —Zpi log; pi.

Let p1, ..., p, be a list of (possibly mixedy-dimensional quantum states. Each state
is assigned a prior probabilitys, . .., p, respectively. We refer to such a list as a source or
ensemble of signal states, denotedby= {p;, p;}. Alice is fed an unending sequence of
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these signal states, with each successive state chosen randomly and independeftiyAfrom
time N she will have the total statey = p;; ® - - - ® pi), With probability p;, pi, - - - piy -

Alice wants to perform either of the following tasks (which are equivalent for our
considerations):

e Communication: Alice wants to send the signals to Bob using a minimum number of
qubits/signal so that Bob can reconstruct long sequences with ‘arbitrarily high fidelity’.
This involves a “coding procedure” for Alice and a ‘decoding procedure’ for Bob (cf. later
discussion for the precise meaning of all these terms).

e Storage: alternatively, Alice wants to store the signals as efficiently as possible. In
this interpretation the coding procedure is used for putting signals into storage, and the
decoding procedure for reconstituting them.

We distinguish two fundamental situations for Alice:

e Preparation-blind (blind): Alice is not given the identity of the individual (generally
nonorthogonal) signal states (she knows only their prior distribution).

e Preparation-visible (visible): Alice is given the identity of the individual signal states (as
well as their prior distribution). Indeed, in this case we may assume that she is simply
provided with a sequence of themes of the states and she may prepare the states herself
if she wishes.

Note that in the blind case, Alice is being fed essentially quantum information, whereas
in the visible case she is getting entirely classical information. In both cases, however, Bob on
decoding is not required to identify the actual signal states, but only to produce high fidelity
representatives of the correct sequence of states. Hence, even in the visible case, the problem
is not one of classical codirignformation theory. The visible case (for pure states) occurs,
for example, in quantum cryptographic protocols (e.g. BB84 [13] and B92 [14]), where the
sender (Alice) is also the state preparer.

3. Coding/decoding schemes and their fidelity

Let H, denote the space of alldimensional states. Given any physical system in state
guantum mechanics allows only the following three types of operations:

e (OP1) A unitary transformatiom — UpU' (U unitary).

e (OP2) Inclusion of an ancilla in a standard staggindependent op), o — p ® po.

e (OP3) Discarding a subsystem (whgeris a state of a composite systet®), pap —
trg(paB).

Note that (OP2) and (OP3) change the valué.of
Consider any length¥ string of input states (given either visible or blind):

oN = piy ® - ® piy € HFN (1)
Probon) = piy - - piy- @

A coding/decoding scheme, usingqubits/signal, is defined by the following requirements,
which are to be specified for all sufficiently largye

e Blind coding: Alice’s coding procedure, if blind, is any specified sequence of the above
three operations applied t@y, giving a final statewy within the required resources
of ¢ qubits/signal (i.e.in 2V dimensions). Mathematically, any such sequence of
operations corresponds to a completely positive, trace-preserving raaghe density
operator, i.ewy = C(pi; ®- - - ® piy ), and any completely positive, trace-preserving map
corresponds to such a sequence of operations.
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e Visible coding: Alice’s coding procedure, if visible, corresponds to ahitrary
assignment of a statey € H,nv t0 eachoy; i.e. Alice can build any state she pleases as
the coded version of the input string.

e Finally, Bob’s decoding (analogous to blind coding) is any sequence of the above three
operations applied to the coded state, yielding a stagt®f "N d-dimensional systems.
Thus decoding is a completely positive, trace-preserving map fem to H .

Let us write Bob’s decoded state, produced by coding followed by decoding of
ON = Piy ® -+ ® Piy, ASON = Gijy..iy- LEL
. |trace ofoj i\ overall
k= {signal spaces except tht‘n}

be the reduced state in thih signal position after coding and decoding; heis'the decoded
version of thekth transmitted statg;, . Let

1/2y2
F(p1, p2) = (trace(pr’*p201'%) %) (4)
denote the Bures—UhIimann fidelity function [15-17]. The cogdilegoding scheme has

fidelity 1 — ¢ if it satisfies the following fidelity requirement: there is &g such that for all
N > Np,

k=1,...,N ©)

N
> Probion) [ [ Flpi.px) > 1—€ (LOCAL-FID). (5)
oN k=1

Note that high fidelity according to (LOCAL-FID) allows entanglement to be introduced
between output signal states, even though there was no entanglement in the input (1), which
was taken to be a product state. This is because we examioaly through its partial traces

(3), thus reducing the state to each position separately. In view of this we might consider a
stronger fidelity criterion (GLOBAL-FID), which replaces (LOCAL-FID) by

> Probioy) F(oy.6y) > 1—€ (GLOBAL-FID). (6)

ON
For ¢ tending to zero, this eliminates extraneous entanglements in the output sequence. Note
that in a continuously varying situation with tending to zero, (GLOBAL-FID) implies
(LOCAL-FID) because (GLOBAL-FID) will require thaty become arbitrarily close toy
and, henceF (p;,, px) — 1 for eachk, too.

Example 1. Alice wants to send Boby = 1/ ® %1, so we may take the decoded state to be
&2 = 31 ® 11 satisfying (LOCAL-FID) and (GLOBAL-FID) withe = 0 or

G2 =3(10) ® 0) +|1) ® [1)((0] ® (0] + (1] ® (1))
satisfying (LOCAL-FID) withe = 0 but not (GLOBAL-FID).

We will generally adopt the fidelity requirement (GLOBAL-FID) in the following. If
it is important that the signal states remain uncorrelated, (GLOBAL-FID) is the appropriate
criterion; otherwise it may be too strong.

Remark 2. (LOCAL-FID) has the following awkward feature: If we have a very high fidelity
coding/decoding scheme according to (LOCAL-FID) and we repeatedly apply it to a long
string,ony — 6§ — 6, then we will not necessarily preserve high fidelity in the sequence
of reduced states. This is because thosigtandoy have essentially the same reduced states
at each position, globally they can be very different states (cf. example 1). Since the coding
scheme is generally ock-coding scheme, it uses the global input state and will work well
only if this global state is @roduct state as in (1). Hencéy will not generally have the
correct reduced states.
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From the above precise formulations of the notions of coding, decoding and fidelity, we
obtain a well defined mathematical problem.

Problem 3. Fora given source E, find the greatest lower bound gminof all q’s with the following
property: For all € > O there exists a coding/decoding scheme based on q qubits/signal with
fidelity 1 — e.

This problem may be considered either in the blind or visible context, with the variation
over encodings taken over the appropriate class of maps in each case. Similarly, it may be
considered in the case of either of the fidelity criteria, (LOCAL-FID) or (GLOBAL-FID). We
will say that the sourc& can be coded (or compressed) at the aig.

Equivalently, the problem may be stated as follows: for a given sairtiad gmin with
the following property. Given an§ > 0, (a) if gmin +  qubitsy/signal are available, then for
everye > 0 there exists a coding scheme with fidelity-x, and (b) ifgmin — § qubits/signal
are available, then there existsar- 0 such that every coding scheme will have fidelity less
than 1— e.

4. Comparing the Formulation with Schumacher’s coding for pure states

The problem formulated above is intended to be a generalization of the scenario in
Schumacher’s theorem [1, 18] to the case of mixed input states. Indeed, if the input states
happen all to be pure states, then the above formulation reduces precisely to the situation of
Schumacher’s theorem. It is interesting to note that several of the distinctions made above
collapse in the special casejafre input states.

Proposition 4. If the input states are all pure, then there is no distinction between the blind
and visible problems.

Proof. In [18, 10] an optimal codingdecoding scheme for the visible pure-state problem

is described. This optimal scheme turns out, remarkably, to be blind; i.e. knowledge of the

identities of the individual input signals gives Alice no further benefitin the case of pure states.
O

In [10] it is also shown that nonunitary decoding operations are of no advantage (on the
criterion (GLOBAL-FID)) in decoding for the pure-state problem. In contrast, for mixed-state
signals, nonunitary decodings are generally essential for optimal compression. This follows
from theorem 7 and section 7 below.

Finally, the distinction between (LOCAL-FID) and (GLOBAL-FID) also collapses for
pure signal states.

Proposition 5. If the input states are all pure, then the two alternative fidelity criteria,
(LOCAL-FID) and (GLOBAL-FID), become equivalent as € is allowed to tend to zero.

Idea of proof. We already know that the (GLOBAL-FID) criterion implies the (LOCAL-FID)
criterion. Suppose that the (LOCAL-FID) criterion holds for a sequencewvaiues tending
to zero. (Here we are thinking of a sequence of codilegoding schemes which all operate
within the resource constraint gfqubits/signal whereg > gmin.) Then the reduced states
px of 6y become arbitrarily close to the input stajgs which arepure. Henceoy cannot
be much entangled since entanglement always shows iagpasity in the reduced states.”
Thusoy must approach the product state and (GLOBAL-FID) holds. O

As a consequence of proposition 5, the awkward feature of (LOCAL-FID) described in
remark 2 does not arise in the codingrafe states.
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5. The S(p) upper bound for gpyin

Let p be the average density matrix of the input states:
n
i=1

Proposition 6. S(p) is an upper bound for qmin under the criterion (GLOBAL-FID) (and
hence also under the criterion (LOCAL-FID)).

Proof. For eachp;, choose a representative ensemble of pure states correspongingoo

that we may view Alice as receiving an overall ensemble of pure states with density matrix
p. By Schumacher’s theorem this may be transmitted to Bob with arbitrarily high fidelity by
compressing t& (p) qubits/signal. O

Note that this compression preserves too much internal structure: Bob faithfully
reconstructs Alice’s chosen ensembles of pure states underlying'sh&ther than just the
pi's themselves. For our purposes it is sufficient for Bob to decode toranyrepresentative
ensemble for the;’s. Hence we would expect that further compression is possible, and the
examples in section 7 below show that it generally is. Furthermore, the coding in proposition
6 gives high fidelity relative to the stronger criterion (GLOBAL-FID); using the weaker
(LOCAL-FID), one might expect even more compression.

In fact we can say more, embodied in the following theorem.

Theorem 7. [9] [19]. For the stronger fidelity criterion (GLOBAL-FID), if the decoding
operation is required to be unitary (i.e. using only OP1 and OP2), then no further compression
is possible, i.e. gmin = S(p).

The proof is given in appendix A.

Note that for the pure-state coding theorem, the decoding may indeed be taken to be
unitary and (GLOBAL-FID) is used (being equivalent to (LOCAL-FID) by proposition 5), but
we do not necessarily wish to impose these conditions in the mixed-state case.

6. A classical analogue

In the case of Schumacher’s pure-state coding theorem, there is a clear classical analogue,
which has been well studied and completely solved, namely Shannon’s noiseless coding
theorem. Though the classical analogue for the case of mixed states appears not to have
been studied, it would involve the compressioommunication of probability distributions.
To formulate the classical problem, let there be a finite number of possible classical states,
i.e., distinguishable alternatives (this is the analogue of our assumption of finite-dimensional
Hilbert spaces), and identify the input and output classical states with particular orthonormal
bases in input and output Hilbert spaces. Write probability weight functions on the sets of
orthonormal pure states as column vecies (p1, ..., p,)' of probabilities. These classical
probability distributions then correspond to commuting density operators diagonal in the input
and output bases.

We may formulate classical preparation-blind coding or decoding procedures as
multiplication of input probability vectors by a stochastic matdixXone with nonnegative
entries whose columns sum to one):

Pout = APin- (8)
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The stochasticity ensures that the matrix can be interpreted as a matrix of transition
probabilities. Asinthe quantum case, preparation-visible procedures are described by arbitary
maps between the relevant spaces, in this case between the spaces of probability vectors. The
stochastic linear maps on the probability distributions correspond to a (convex) subset of the
trace-preserving completely positive maps on density operators, and a given classical problem
maps onto a corresponding quantum problem of sending commuting density operators. If
we allow all possible trace-preserving completely positive maps, instead of just those which
correspond to classical dynamics in the diagonalizing bases, we are using quantum means to
deal with a classical problem, and we can compare the power of these quantum means to that
of the purely classical means defined by restricting the allowable CP-maps to those that act as
stochastic matrix multiplication in the given bases.

These notions and comparisons are illustrated in the following examples, which are
phrased in terms of the quantum language, i.e., viewing classical distributions as commuting
mixed states.

Example 8. We have two input stategy, p2 € Ha,

p1 < diagla, 1 — a1) p2 < diag(az, 1 — a2) (9)
which are simultaneously diagonal in a basis known to Alice and Bob. Let the prior
probabilities for these two states Ipg and p,. Classically we may regard the two states
as suitably biased coing;; andC,. A preparer chooses a sequence of coiisor C2 with
probabilitiesp1 and p2, and tosses each of them once. The sequence of outcomes is passed
on to Alice. Since Alice can look at the sequence of outcomes, we can regard the sequence
of outcomes as the realization of ‘Alice being given an unknown sequence of the two states’.
Notice that in the blind case, Alice cannot be given the actual coins that make up the input
sequence, for she could then toss each one many times and identify the coins in the sequence,
which is impossible to do given a single instance of each quantum state in the sequence. In
contrast, in the visible case, Alice is given the sequence of coin names (or the actual coins,
from which she could generate the sequence of coin hames), together with a sequence of
outcomes. In both cases, the objective of the protocol is to have Bob generate a sequence of
outcomes that are governed by the same probabilities as Alice’s input sequence of outcomes.
Thus we have the following classical problems.

Blind case. A preparer chooses a sequence of caihspr C2 with prior probabilitiesp; and
p2, tosses each of them a single time, and passes the sequence of outcomes on to Alice. Alice
‘codes’ her sequence of outcomes, and Bob ‘decodes’ the result, obtaining an output sequence
of outcomes. The codingecoding processes may involve probabilistic processes. As before,
Alice would like to compress the input sequence as much as possible for transmission. A
perfect codingdecoding scheme would achieve the following: Suppose that in position 1 the
preparer has used coiry; then, taking into account the probability of outcomes in tossipg
and all probabilistic processes involved in codidgcoding, the first entry in Bob’s outcome
sequence should have a probability distribution which issthwee as for coinCoz. A similar
condition should apply at each position of the sequence.

This condition requires perfect fidelity of transmission of the distributions. In order to
allow the usual situation of fidelity that approaches perfection only in an asymptotic limit
of longer and longer block coding, we introduce a fidelity function for classical probability
distributions. Ifp = (p1, ..., p»)" andg = (q1, ..., ¢,)" are two probability distributions
on the same space, then the fidelity is defined by

n 2
Fu(p.q) = (Z \/171«@) (10)

i=1
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which is also known as the Bhattacharyya—Wootters distance (or overlap) between the
distributions. Notice thatfg(p,q) = 1 iff p = ¢. The classical fidelityF; may be
viewed as a special case of the Bures—Uhlmann fidelity (4),Ag(p, q) = F(p1, p2) for
two commuting density operators, andp», that havey andg on their diagonals.

The problem is then to find the minimum number of jgignal which suffices to code the
input string with asymptotically arbitrarily high fidelity. (A precise formulation is very similar
to that given for the quantum problem in section 2.) There is an obvious upper bound on the
minimum number of bitgsignal: Alice may compress her outcome sequence to the Shannon
entropy of the average coifi] (o, 1 — o) = S(p) bits/signal, wherex = pia1 + poaz is the
average probability for the first outcome; Bob can decode the compressed sequence to produce
an output outcome sequence that has asymptotically perfect fidelity. Because we are dealing
here with commuting density operators, this upper bound is the same $&bhepper bound
of section 5.

Visible case. In this case Alice is fed the sequence of actual coin nafigsr Co, in addition
to outcomes of tossing each coin once. The blind-case upper bouithofl — a) = S(p)
bits/signal applies also to the visible case, but there is an additional clear upper bound in the
visible case: Alice may simply send Bob the full information of which coin to use at each
stage; she can compress this data by the Shannon entropy of the prior distribution of coin
choices, i.eH (p1, p2) bits/signal.

Although we do not know the optimal number of Biggnal for this problem, we now
describe a purely classical codjftpcoding scheme which beats both bounds for some values
of the parametergs, p2, @1, andaa.

Example 9. Suppose that; > 1. Denote the coin toss outcomes by H and T, with H having
probability«; for coin C;. Alice sends one of three possible messagés, M1, or M2, to
Bob according to the following (probabilistic) coding scheme:

e Regardless of the input coil@’{ or C2), Alice sendsMg with probability 1— oo + 1.
o Ifthe messag@/ is nor chosen (i.e. with probability, — «1), Alice sends\y if the coin
is C1 andM> if the coin isC».

Bob responds to these signals as follows:

e For My Bob probabilistically generates H or T with prob(H) «1/(1 — a2 + @1) and
prob(T)= (1 — a2) /(1 — a2 + 1).

e For M1 Bob generates T with probability 1.

e For M> Bob generates H with probability 1.

Curiously, in the latter two cases Bob actually learns the identity of the coin yet he responds
with a different distribution! It is readily verified that for each position in the sequence,
taking into account the probabilistic choices in codidgcoding, Bob’s output result correctly
represents the result of one toss of the corresponding input coin.

The messageX, M1, andM; are sent with probabilities + a2 + 1, p1(@2 — 1), and
p2(a2 — a1), SO Alice can compress the sequence to

E=H1l—ax+a1, p1(a2 — a1), p2(x2 — 1)) bits/coin toss.

If p1 = po = 3 anday ~ ax ~ 1, thenH (p1, p2) = 1andS(p) = H(@, 1—a) ~ H(3, 3),
whereasz ~ 0, thus beating the two bounds. (For some other values of the parar@eters
exceeds both bounds.)

It has been conjectured that the minimum number of bigmal for this classical problem
(andits natural generalization to many classical distributions) should beithe! information
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H(a,1l— o) — p1tH(a1,1 — a1) — p2H (a2, 1 — a2), even if global fidelity is required, but
this has resisted progdisproof so far. (This would coincide with the lower bound given in
section 8.) In example 12 below we will describe a quantum protocol for this problem which
is better than all the above protocols.

7. Examples of compression beyond S(p)

We now return to our main question of quantum coding for general sources of mixed states.
Though the problem of the optimal valuegfin remains unsolved, we describe here a series of
interesting examples of compression beyond$t@ upper bound given in section 5. These
examples reveal something of the intricacy of this problem. (Notice that example 9 already
provides a case of compression beyondS$ke) bound in the classical context.) In the next
section we will derive a lower bound fgin.

Example 10. (Trivial cases). The following two situations are blind, but Alice may reliably
identify the input states, thus making them visible.

(a) Suppose that there is only one possible input signal %I sop = %I andS(p) =1
qubit/signal. Yet Alice need not send anything atall; i.e., we may compress to O (gigital.

(b) Suppose that the input signaiswith prior probabilitiesp; are supported oarthogonal
subspaces. (The support of a mixed state is defined as the subspace spanned by all eigenvectors
belonging taionzero eigenvalues.) Thus Alice may reliably measure the identity of the inputs

and compress the resulting data 8(p1, ..., p,) qubits/signal. Now for orthogonally
supported states we have generally
S(P)=H(p1, ... pa)*+ Y _ piS(pi) = H(p1, ..., pa). (11)

Example 11. (A nontrivial blind example with noncommuting mixed input states). There are
two signal statesp; and p2, in m + n dimensions with prior probabilitieg; and p>. The
states have a block-diagonal form,

p1 = diagleor, (1 — €)11), p2 = diag(eoz, (1 —€)12)

whereo ando? are density matrices of size x m andr; andr, are density matrices of size
n x n. Writing

p = p1p1+ p2p2, o = p101 + p20o2, T = p1T1+ P22
ones easily sees that
S(p) = H(e,1—¢€) +€S(0) + (1 — €)S(7). (12)

In the S(p) coding scheme of proposition 6, we may interpret this formula as follows. For a

sequence of inputs Alice first measures éhspace versus the-space—projecting the input

state into whichever space is the outcome—and she compresses the resulting string of subspace

names taH (¢, 1 — €) bits/name. If the outcome space wassubspace’, a result that occurs

a fractione of the time, she compresses the post-measurement stg€)tqubity/'signal, and

similarly if the outcome wast'-subspace’, which occurd — ¢) of the time, she compresses

to S(7) qubits/signal. Thus the total sending resources is the sum of these three terms in (12).
Now suppose that1 # o2, but thatry = 2 = t. Then, in the case that Alice’s

measurement outcome is-subspace’, a result that also becomes known to Bob through the

communication of the subspace names, she need not send the post-measurement state at all, as

Bob already knows it (i.e5) and can construct it himself. Thus we may drop the last termin

(12) and communicate the mixed states (with perfect fidelity) using Hriby 1 — €) + € S(o)

qubity/signal, which is less thai(p) by an amountl — ¢)S(z).
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Example 12. (Visible coding by purification of the input states). The general idea here
(cf.also [11]) is that in the visible situation, Alice may build purifications of the input mixed
states and send these purifications (whichzase states) to Bob utilizing the compression
of Schumacher’s pure state coding theorem. On reception Bob regains the mixed states by
selecting a suitable subsystem of each decoded purification state.

As a first example, consider a special case of states of the form in example 8. There are
two possible input states,

p1 =diagle, 1 —¢€), p2 = diag(l — ¢, €), (23)

with equal prior probabilitiegp1 = p2 = % HenceS(p) = 1 andH (p1, p2) = 1. After
constructing purificationg)1) and|y), Alice’s task is to send a 580 mixture of|y1) and

|¥r2). Thus to get the greatest benefit from Schumacher compression, the purifications should
be chosen so that their ensemble has least von Neumann entropy; i.e., the two purifications
should be as parallel as possible. According to Bures and Uhlmann’s basic theorem

[15-17], the minimum possible angigin between purifications gf; andpy is given by
oS bmin = F(p1, p2).

Moreover, a 5050 mixture of states at angha,in has entropy
S — <1 +COYmin 1— cos@min>

2 ’ 2
which gives the Schumacher limit of qubitsgnal in compression by this method.
For the states in (13) we readily compute

F(p1, p2) = 4e(1—¢)
so that Alice may compress the purification ensemble to
T(e)=H(3+Ve@—e),3—/eT—¢) qubits/signal

which is better thats (p) or H (p1, p2), being equal to these only wheris 0 or 1.

Note that the purely classical compression method of example 9 applies to this case, too.
The relevant parameters gog = p» = 3,01 = €, a2 = 1 — ¢, and 0< € < 3. The method
of example 9 gives compression to

E(e) = H(26, % — ¢, % — e) = H(2¢,1—2¢) +1— 2¢ qubits/signal
and we get

E(e) = Y(e) for 0<e<

Nl

with equality only fore = 0 or % Thus, whenever the states and oo of equation (13) are
mixed, the quantum purification compression beats the classical method of example 9.

Remark 13. (A simple construction of optimally parallel purifications for commuting states).
Given any mixed state in diagonal form= diag(p1, ..., p»), we may immediately write
down a canonical purification:

W) = Vpilei) ® lei)

i=1
where{|ex)} is the diagonalizing basis far. Given two such states,

Iolzdiagpla"'apﬂ)5 pZZdianlw--,Qn)
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the canonical purifications clearly satisfy

n 2
[(Yralv2)|? = (Zﬁ@) = F(p1, p2)

i=1
= (Bures—Uhlmann limit for cG®).

Thus for simultaneously diagonal states, the canonical purifications are always optimally
parallel.
Notice that the diagonal entries pf andp; are classical distributionsandg and that

(Y1 1¥2)|? = F(p1, p2) = Fa(p. q).

The construction of optimally parallel purifications converts the Bhattacharyya—\Wootters
overlap of classical distributions into quantum overlap of pure quantum states. In this way
the methods ofjuantum coding may be applied to problems of compressioriefsical
probability distributions.

Suppose now that we have twomore simultaneously diagonal states,

p@ = diagp\”, ..., p\®) a=1,..., K.

Then their canonical purificationgs ) have the remarkable property that they are all
simultaneously pairwise maximally parallel. Recall that Uhlmann’s theorem gives a limit
on how parallel purifications can get for apyir of mixed states. It does not follow that this
optimal parallelness can Bénultaneously achieved by purifications of three or more states.
Yet for simultaneously diagonal states, this optimal simultaneous parallelism is achieved by
the canonical purifications.

It seems unlikely, however, that maximum parallelness gives the best set of purifications
for the purpose of mixed-state compression when there are three or more signal states. Jozsa
and Schlienz [20] have shown the existence of pairs of pure-state ensemblps )} and
{pi.|x:i)} for which all homologous pairs in the second ensemble are less parallel (i.e.,
Vi, jl{xilx;) = 1{ily;))), but for which the entropy of the second ensemble is nevertheless
smaller. This phenomenon is expected to persist under the added constraint that the states
involved are purifications of the given mixed states.

Remark 14. If Alice sends Bob the canonical purification pf

W) =Y Jpilei) ® lei)
she is actually supplying him with two copies pf—one for each of the two subsystems of
the purification. Therefore one suspects that this compression is not optimal, at least when the
criterion (LOCAL-FID) is used. To benefit from this observation, we might try to construct
purifications each of which codes two signal states, one in each subsystem of the purification.
To do this, the two signal states must have the same eigenvalues, but they need not be identical
(e.g., as occurs in example 15 below). Thus the signal states would purify each other in
pairs at the expense of introducing strong entanglement in the output signal sequence. This
construction would have high (LOCAL-FID) fidelity, but low fidelity for the (GLOBAL-FID)
criterion. Of course, even with the stronger criterion (GLOBAL-FID), it is not clear that the
compression of example 12 is optimal.

Example 15. (The ‘photographic negative’ example, another application of compression by
purification.) Suppose that we ha¥@ossible input signals;, wherep; is thed x d diagonal
density matrix with equal entries ld — 1) along the diagonal except for tli entry which

is zero:

1
0i = ﬁdiag(l, 1,...,1,0,1,...,1 where 0 is in theth place.
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The signals all have equal prior probabilitigs= 1/d, givingp = I/d.

The canonical purifications ik, ® Hy all lie in ad-dimensional subspace spanned by
{le;) ® |e;)}, where{le;)} is the diagonalizing basis of thg’s. A direct calculation shows
that the equally weighted mixture of purifications in thislimensional subspace is a density
matrix

_d-=2 . 1 1
p= d_1|w><w| J—14

wherel is the identity matrix in thel-dimensional subspace, and

1 d
ly) = ﬁ;ei)@m

is a maximally entangled state. Thusan be viewed as a mixture of a totally mixed statg
with probability 1/(d — 1), and a maximally entangled pure sté&ie (|, with probability
(d —2)/(d — 1). Changing to a basis in whicly) is the first basis vector, we can easily
determine the eigenvalues pfto be a nondegenerate eigenvalde— 1)/d and (d — 1)
degenerate eigenvalue&ild — 1). A short calculation gives

—S()—H(d_11)+1m(d 1)
a=2 =T a) T

2 1
=7 logd — 1) — Iog(l — 3> qubits/signal

for the compression scheme. Note that> 0 asd — oo.
Introducing the Holevo quantity for the ensemlale= {p;, p;},

- 1
X(E) =S(p) =) piS(pi) = — Iog(l— 3>

we find
2
q=x+3bmd—b

sog — x asd — oo. Note that although we described this construction in terms of block
coding the ensemble of canonical purifications for all the signals, it also provides canonical
purifications for the ensemble of-block mixed states. Nonetheless, for finitethe above
bound remains greater than the Holevo bound. Thus, if the conjecture that the Holevo bound is
achievable by visible compression is correct, then, perhaps surprisingly, canonical purification
is a suboptimal method of compression.

8. A lower bound on the rate of mixed-state compression

There is a simple argument that the Holevo quantity for an ensembie{p;, p;} of mixed

states is a lower bound on the rate at which such an ensemble can be coded. Here we use the
global fidelity criterion (GLOBAL-FID), and encoding may be blind or visible. This argument
uses the result, shown for pure-state ensembles by Hauslad@1] and for general mixed-

state ensembles by Holevo [22] and by Schumacher and Westmoreland [23], that the Holevo
guantity for an ensemblg is the capacity for classical information transmission using the
states in the ensembleas an alphabet. The gist of the argument is that if an ensemble of
mixed states could be coded at a rate lower than its Holevo quantity, even with preparation-
visible encoding, then one could code a Holevo quantity’s worth of classical information into
those mixed states, compress them to an ensemble on a channel space of size smaller than
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the Holevo quantity (per use), recover the original ensemble with high fidelity, and therefore
recover the classical information. But since the classical information capacity of an ensemble
of states cannot be larger than the log of the dimension of its Hilbert space (since this is greater
than or equal tg for any ensemble), this is impossible.

To formalize this argument, consider an ensemble (or soutce) {p;, p;} of mixed
stateso; with probabilitiesp; on a Hilbert spacéi,; of dimensiond. The Holevo quantity for
this ensemble is

X(E)=S (Z pip,») — > " piS(p). (14)
i i
A sequence ok signals from this source gives a state drawn from the ensemble

E®N = {PiyPiz -+ Piy s Piy & Piy @ -+ ® piy}. (15)
We introduce the notatiori(A) = {p;, f(p;)} for the ensemble obtained by applying a map
fto the states of the ensembieand we writeB () for the space of bounded operators on a
Hilbert space.
For two ensembles with the same probabiliti¢ss {p;, p;} andB = {p;, 0;}, we define
an average fidelity by

F(A,B)=)_ piF(pi, o). (16)

In proving the main theorem of this section, we will need a lemma that bounds the absolute
value of the difference in the Holevo quantities for two ensembles in terms of their average
fidelity, provided the average fidelity is high enough.

Lemma 16. If F(A, B) > ,/35/36, then
Ix(A) — x(B)| < (2+2v2)y/1— F(A, B)logd +1 (17)

whered is the dimension of the state spacedcdndB.

The proof is given in appendix B.

Our formulation of the mixed-state compression problem for the fidelity criterion
(GLOBAL-FID) can now be stated succinctly. Relative to (GLOBAL-FID), the soutce
can be coded (or compressed) at a ratié there exists a channel Hilbert spacewith
g = log(dim C) and encodingdecoding schemegg™), DV},

™M B(HEY) — B(C®V)

18
PN B(C®N) — B(HPN) (18)
such that
lim F(E®N FV) =1 (GLOBAL-FID) (19)
— 00
where
FM = pW) 6 o) (E®N) (20)

is the ensemble after decoding. We require that the encodiiggake density operators
to density operators and that the decodimj$’ be trace-preserving completely positive
linear maps. Permitting the encodings to be arbitrary maps on density operators allows for
preparation-visible encoding;df") is a trace-preserving completely positive linear ré&lp,
then the compression is preparation-blind.

The argument outlined at the beginning of this section can be formalized in the following
theorem.
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Theorem 17. For the fidelity criterion (GLOBAL-FID) and for both blind and visible
encodings, the Holevo quantity x (E) for an ensemble E = {p;, pi} is a lower bound for

gmin.

Proof. Suppose that the ensemtile= {p;, p;} can be compressed at a rgte< x (E) with
asymptotically high fidelity (equation (19)), whether preparation-blind or preparation-visible.
Consider the ensemble of channel states (density matrices)

W = A pii piy -+ Piy s Winig..in} (21)
where

Wiqip...ip = e(N) (Ioil ® Piy K& piN)

is the encoded state corresponding to the unencoded sourcestate;, ® --- pi,. The
Holevo quantity for V) satisfies

K (W) < s(oi‘gggffﬂ%fﬁ < Ng < Nx(E) (22)
whereNg is the the log of the dimension of the channel Hilbert spacé/flolocks of channel.

Consider now the following procedure for using tNeblock operatorsw;, ;, as an
alphabetto send classical information. Make codewords out of strilgobthese operators.
Prune them as one would if one were coding using the operators of the ensembl& ™) in
the Holevo—Schumacher—Westmoreland procedure for attayifg"’) as classical capacity.
As the first step in the decoding procedure, convert them using the ded@p® into
strings of the operators, . ;, of the ensemblé& ™. Then apply the decoding measurement
appropriate to that ensemble.

This procedure clearly uses theblock ensemblév ) to transmit classical information
atthe ratee (F™)) perN blocks. But by assumption (cf. (19)), the ensem®i& has, at large
enoughV, arbitrarily high fidelity to the original ensemblg®” . Hence, applying lemma 16
to the ensembleB®" and M), whose states lie il -dimensional Hilbert spaces, one finds

X (FV)

x(E) — <2 +«/§)\/1—F(E®N,F<N>)Iogd+%. (23)

Thus for large enoughv, x (F™"))/N is arbitrarily close tox (E), which is greater than

x (W) /N by at least an amount(E) — ¢, independent ofN. So for large enough,

x (FM)) exceeds (W™™), contradicting the fact that the classical capacity of the ensemble
WM is x (WN)). We conclude that the compression rataust satisfyy > x (E). O

Horodecki [11] has independently derived the lower bound of theorem 17, using the
nonincrease of the Holevo quantity under completely positive maps. This nonincrease is
an easy consequence of the monotonicity of relative entropy under such maps [24, 25], and
therefore of Lieb’s fundamental concavity theorem [26]). (A good treatment of all of these is
to be found in [27].)

A special case of theorem 17 is the lower boundS¢f) qubits per source signal on
the rate of compression of ensembles of pure states. This lower bound was established for
preparation-blind encodings and unitary decodings in [1]; for arbitrary (preparation-blind or
preparation-visible) encodings and unitary decodings in [18]; and, by somewhat technical
arguments, for arbitrary encodings and decodings using completely positive trace-preserving
maps in [2]. The present result allows for arbitrary encodings and decodings using completely
positive trace-preserving maps, so it provides an alternative and perhaps more satisfying
derivation of the most general form of the pure-state lower bound.
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The lower bound in theorem 17 raises the fundamental open question of whether the
bound is achievable (with global fidelity) with either blind or visible encoding. If not, one
would like an expression for the achievable rate in both cases. Even for transmitting classical
mixed states, the question of the best achievable rate remains open, in both the variant allowing
guantum means of compression and that requiring only classical means.
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Appendix A. Proof of theorem 7

Proposition 6 may be used for part of the proof, but we give a different argument that utilizes
properties of the Bures—Uhlmann fidelity function throughout. We first establish two lemmas
which are direct Bures—Uhlmann fidelity analogues of lemmas 1 and 2 in [18].

Lemma Al. Let p and p' be mixed states on H, with p’ supported on a d-dimensional
subspace D. Then F(p, p') is less than the sum of the d largest eigenvalues of p, which we
write as 1 — .

Proof of lemma A1. We use the fact that

F(p, p') = inftracepA tracep’A™1 (24)
where the infimum is over all strictly positive operatdrf28]. Choose

A {I on DL

el on D— (for anye > 0).

Then

tracep’ A"t =1
and

tracepA = tracepD + e tracepDt < 1 —n+etracepD < 1— 7.
Hence

F(p, p') < tracepA tracep’A™1 < 1—p
as required. O

To set the stage for the second lemma, consider a density opgratok,,. Denote the
eigenvalues op in decreasingorderby:,i = 1,..., n. LetD be thed-dimensional subspace
spanned by the eigenvectors belonging todHargest eigenvalues qf; denote the sum of
thesed eigenvalues by & . Denote the projector ontd by IT, and let|0) be any pure state
in D. Now consider the density operator

p' = TpIT+n|0)(0].
This density operator can be obtained frpnby first applying the binary measurement that
projects ontoD (outcome ‘1’) or ontoD+ (outcome ‘0’) and then, if the outcome is 0,

substituting|0) (0| for the post-measurement state. With these preliminaries, the lemma can
be stated as follows.
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Lemma A2. F(p,p’) > 1-2n.

Proof of lemma A2. If we write p in its orthonormal eigenbasis,

n
p=Y lileieil
i=1

o' becomes
d
p'= ) hilei)(erl +nl0)(0].
i=1
Introduce the following purifications of andp’:

16) =Y Vhile) ® i)
i=1

d
6y = Vhile) ® 1 fi) + /110 ® |g).
i=1
Here the vector§f;),i = 1, ..., d are orthonormal, ang) is orthogonal to eachy;). Since
fidelity is the maximum absolute value of the inner product of purifications, we have
2

d
F(p, p') = (9l = (ZM) =1-n?>1-2
i=1

as required. O

Proof of theorem 7. Suppose that we compress§6p) — § qubits/signal by any coding
method whatsoever. Then if the decoding scheme is unitary, the decodeshsttarinput
stringoy of lengthN is supported inV (S(p) — §) qubits. Yet the density matrix for strings of
lengthNV is p®¥ , and by a standard typical sequences result (cf. [18]), the sum of the 2
largest eigenvalues gf¥" becomes arbitrarily small with increasing Hence, by lemma
Al, F(oy, 6n) is arbitarily small, too, and the fidelity cannot be high by the (GLOBAL-FID)
criterion.

On the other hand, i§(p) + 8 qubits/signal are available, then lemma A2 provides
an explicit high-fidelity coding scheme, with being the 2$(»*9_dimensional subspace
spanned by the’S()*9) weightiest eigenvectors @™ . a

Appendix B. Proof of lemma 16

The proof uses the following inequality (proved in [4]):

1S(p1) — S(p2)| < 2¢/1— F(p1, p2)logd +1 (25)

which is valid if

21— F(p1, p2) < 3. (26)
We use this to obtain a similar relation, but with the average ensemble fidelity in place of the
fidelity on the right-hand side. Let = {p;, p;} andB = {p;, o;} again denote two mixed-
state ensembles having the same probabilities. Lejsing ) ; p;p; ando = ) ; pio;,
we have an inequality involving the error measyfgé — F(p, o). We need to convert this
into one involving the error measure-1 F(A, B). Defining yet another error measure
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8§=1-.F(p,o),simple algebra givegl — F(p, o) = +/8(2 — §). The double concavity
of G(p1, p2) = /F(p1, p2) (proved in appendix C) gives

> piG(pi, o) < G(Zpipi, ZPM’) =G(p, o). (27)

Hence
8=1-G(p.0) <1=) piG(pi.op)
i

<1-Y piF(pi.o)) =1—F(A,B) =e. (28)

Therefore, we have the inequality
IS(p) — S(0)| < 2y/é(2—6)logd +1

<2/e2—e)logd +1
< 2v2y/1— F(A, B)logd + 1. (29)
This inequality is valid provided (26) holds, which is certainly true if
0<e<1-—,/3536 — F(A, B) > /35/36. (30)

Furthermore, we can also use the inequality (25) to bound the difference in the average
entropies for the two ensemblesatlimensional states,

‘ D piS) =Y piSen)| < Y pilSpi) — S0
< > pi(2y/1=F(pi.0;)logd +1)

< 2\/1— ZPiF(Pian”Ogd"'l
i

=2y/1—F(A, B)logd + 1. (31)
Combining equations (29) and (31) yields the desired result (17). O
Appendix C. Double concavity of G (o1, p2)
In this appendix we show that
G(p1, p2) =V F(p1, p2) = tracq//p1p2+/p1 (32)
is doubly concave, i.e.,
Gp1+ (1 —21)o1, Ap2 + (1= M)o2) = AG(p1, p2) + (1 — 1)G (01, 02). (33)

The proof uses a representation of the quantum fidelity in terms of measurement
probabilities. Given a measurement described by a positive-operator-valued measure (POVM)
with POVM elementsE;, the probability for outcomeis p; = tracepE;. Fuchs and Caves
[29] showed that the quantum fidelity pf andpz is the classical fidelity of the measurement
probabilities for the measurement that, according to the classical fidelity, best distinguishes
the two density operators, i.e.,

F(p1, p2) = ?}l? Fei(p1, p2). (34)
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Here the minimum is taken over all POVM#;}, andp, and p, are the column vectors of
measurement probabilities fpg andp, generated by the POVNE; }.
The proof begins by noting that for four positive real numbers,

0 < (VA2 — /X201)? = x1y2 + X2y1 — 2/X1%2)y1)2

from which it follows that the function/x1x2 is doubly concave, i.e.,

VI + (@ = Myllhee + (1= Wya] = \/)»ZX1X2 + (1= 1)2y1y2 + A(1 = M) (x1y2 + x2y1)

> \/ A2x1x2+ (1= 1)2y1y2 + 20(1 — M) /x1x2y1)2
= AJ/x1x2 + (L= 1) /y1y2.

The square root of the classical fidelity,

Ga(p. q) = Fa(p.q) = Y /Pidi (35)
i=1

being a sum of such functions, is thus also doubly concave:

Ga(hpr+ (1 =M)gq1. Apo+ (1= 2)q3) 2 AGel(p1, p2) + (1= 1)Gai(q1, q2)- (36)

Now use the representation (34), written in terms of square roots of fidelities, to show the
double concavity oG (p1, p2):

G(kpr+ (1 =101, ko2 + (L —21)o2) = ?glr; Ga(Apr+ (L =2)qq1, Apy+ (1= 21)q>)
J

= ?]}i‘r}](AGcl(Pl, Po) + (1 —=1)Ge(q1.92)
J
> minAGq(p1, +min(1 —A)Ge(q1,
hod c(p1, P2) {F,-}( )Gel(q1,q2)

= AG(p1, p2) + (1 — 1) G(01, 02). (37)
(Another proof, by Nielsen [30], uses the relation of quantum fidelity to purifications.)
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